

***** +80795842, 13691145432

⊠ typ@ncepubj.edu.cn

华北使の大学 North China Electric Power University 高电压岛电磁兼容技术研究所 High Voltage & Electromagnetic Compatibility Laboratory

第二篇

电力系统过电压及保护

第一节 无损耗单导线 线路中的波过程

波过程的物理概念
波动方程及其解
前行波和反行波
波阻抗与波速

第一节 无损耗单导线线路中的波过程

1. 波过程的物理概念

电源向电容充电,在导线周围建立起电场,靠近电源的电容立即充电,并向相邻的电容放电

- 由于电感作用,较远处电容需一段时间才能充上 一定的电荷,电压波以某速度沿线路x传播
- 随着线路电容的充放电,将有电流流过导线的电感,在导线周围建立起磁场。电流波以同样速度沿x方向流动

- 电压波和电流波沿线路的流动,实际上就是 电磁波沿线路的传播过程
- 电压波和电流波的关系

$$\frac{u}{i} = \sqrt{\frac{L_0}{C_0}} = Z$$

电流波和电压波沿导线的传播过程实际上就 是电磁能量传播的过程

$$\frac{1}{2}(vL_0) \cdot i^2 = \frac{1}{2}(vC_0) \cdot u^2$$

$$\begin{cases} -\frac{\partial u}{\partial x} = L_0 \frac{\partial i}{\partial t} \\ -\frac{\partial i}{\partial x} = C_0 \frac{\partial u}{\partial t} \end{cases}$$

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} = L_0 C_0 \frac{\partial^2 u}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} \\ \frac{\partial^2 i}{\partial x^2} = L_0 C_0 \frac{\partial^2 i}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 i}{\partial t^2} \end{cases}$$

$$\begin{cases} u = L_0 dx \frac{\partial i}{\partial t} + u + \frac{\partial u}{\partial x} dx \\ i = C_0 dx \frac{\partial u}{\partial t} + i + \frac{\partial i}{\partial x} dx \end{cases}$$

采用运算微积求解: 拉氏变换 $u(x,t) \Leftrightarrow U(x,p), i(x,t) \Leftrightarrow I(x,p)$

$$\begin{cases} \frac{d^{2}U(x,p)}{dx^{2}} = L_{0}C_{0}p^{2}U(x,p) \\ \frac{d^{2}I(x,p)}{dx^{2}} = L_{0}C_{0}p^{2}I(x,p) \end{cases}$$

二阶齐次线性 常微分方程

$$v = \frac{1}{\sqrt{L_0 C_0}} \begin{cases} U(x, p) = U_q(p)e^{-\frac{p}{\nu}x} + U_f(p)e^{\frac{p}{\nu}x} \\ I(x, p) = I_q(p)e^{-\frac{p}{\nu}x} + I_f(p)e^{\frac{p}{\nu}x} \end{cases}$$

 $U_q(p)$ 、 $U_f(p)$ $I_q(p)$ 、 $I_f(p)$ 由初始和边界条 件确定 9

根据拉氏变换的延迟定理

 $f(t) \Leftrightarrow F(p) \longrightarrow F(p)e^{-p\tau} \Leftrightarrow f(t-\tau)$

$$\begin{cases} u(x,t) = u_q(t - \frac{x}{\upsilon}) + u_f(t + \frac{x}{\upsilon}) \\ i(x,t) = i_q(t - \frac{x}{\upsilon}) + i_f(t + \frac{x}{\upsilon}) \end{cases}$$

变量置换

$$\begin{cases} u(x,t) = u_q(x - \upsilon t) + u_f(x + \upsilon t) \\ i(x,t) = i_q(x - \upsilon t) + i_f(x + \upsilon t) \end{cases}$$

10

3. 前行波和反行波

电压波的分量之一: $u_q(x-vt) \longrightarrow 前行波$

观察者由任一时间 t_1 开始,从任一点 x_1 出发,沿x方向 以速度v运动

$$\frac{dx}{dt} = v$$

 $x - vt = [x_1 + v(t - t_1)] - vt = x_1 - vt_1 = \text{ \widehat{T}} \text{ \widehat{T}}$

11

电压波的分量之二: $u_f(x+vt) \longrightarrow 反行波$ 值不变, t 增加, 以速度 v 向 x 反方向运动 $x+vt = [x_1 - v(t-t_1)] + vt = x_1 + vt_1 = 常数$

$$u = u_q + u_f$$
$$i = i_q + i_f$$

电压波和电流波的关系

- > 电压波与电流波通过波阻抗 2 相互联系
- > 电压波符号只与地电容电荷的符号有关
- > 电流波符号由电荷符号和运动方向决定

$$\begin{cases} U(x,p) = U_q(p)e^{\frac{-p}{v}x} + U_f(p)e^{\frac{p}{v}x} \\ I(x,p) = I_q(p)e^{\frac{-p}{v}x} + I_f(p)e^{\frac{p}{v}x} \\ I(x,p) = I_q(p)e^{\frac{-p}{v}x} + I_f(p)e^{\frac{p}{v}x} \\ \frac{dU(x,p)}{dx} = -\frac{p}{v}U_q(p)e^{\frac{-p}{v}x} + \frac{p}{v}U_f(p)e^{\frac{p}{v}x} \\ -\frac{\partial U(x,p)}{\partial x} = pL_0I(x,p) \\ I(x,p) = \frac{1}{vL_0}U_q(p)e^{-\frac{p}{v}x} - \frac{1}{vL_0}U_f(p)e^{\frac{p}{v}x} \\ I_q(p)e^{\frac{-p}{v}x} = \frac{1}{vL_0}U_qe^{\frac{-p}{v}x} \\ I_f(p)e^{\frac{p}{v}x} = -\frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(p)e^{\frac{p}{v}x} = -\frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = \frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = \frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = -\frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = -\frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = -\frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = -\frac{1}{vL_0}U_fe^{\frac{p}{v}x} \\ I_f(x,p) = -\frac{1}{vL_0}U_f(x,p) \\ I_f(x,p) = -\frac{1}{vL_0}U_f(x,p)$$

波阻抗Z: 表示同一方向传播的电压波与电流 波之间的比例大小

■ 不同方向的行波,Z前面有正负号

Z只与单位长度的电感和电容有关,与线路长度无关

■ 既有前行波,又有反行波 时

$$\frac{u}{i} = \frac{u_q + u_f}{i_q + i_f} = Z \frac{u_q + u_f}{u_q - u_f} \neq Z$$

15

行波的折、反射规律
 几个特例
 集中参数等值电路---彼得逊法则

1. 行波的折、反射规律 原因:参数突然改变 边界条件: 在节点A只有一个电压和电流 $\begin{cases} u_{1q} + u_{1f} = u_{2q} & u_{2q} = \frac{2Z_2}{Z_1 + Z_2}E = \alpha_u E \\ i_{1q} + i_{1f} = i_{2q} & u_{1f} = \frac{Z_2 - Z_1}{Z_1 + Z_2}E = \beta_u E \end{cases}$ $\alpha_u = 1 + \beta_u$ $u_{1f} = E$ $u_{1f} = E$ Z_2 2 Z_1 A Z_2 Z_1

1. 行波的折、反射规律

$$\alpha_i = 1 + \beta_i$$

第二节

波的折射和反射

2. 几个特例

- ▶ 电压折射系数=2,反射系数=1
- 能量角度解释: P₂=0,全部能量反射回去,使线路上反射波到达的范围,单位长度总能量等于入射波能量的2倍,反射波到达后线路电流为零,磁场能量也为零,全部能量都储存在电场

2. 几个特例

- ▶ 折射系数=0,反射系数=-1
- 能量角度解释:因为线路末端接地短路,入射波 到达末段后,全部能量反射回去成为磁场能量, 电流增加1倍

■ 线路末端接有负载电阻 $R=Z_1$

- ▶ 折射系数=1,反射系数=0
- ▶ 相当于线路末端接于另一波阻抗相同的线路,波 到达末端后无反射
- ➢ 两种情况的物理意义相同吗?

3. 集中参数等值电路(彼得逊法则)

 $u_{1f}(t) + u_{1b}(t) = u_{2}(t)$ $i_{1f}(t) + i_{1b}(t) = i_{2}(t)$ $i_{1f}(t) = u_{1f}(t) / Z, i_{1b}(t) = -u_{1b}(t) / Z$ $2u_{1f}(t) = u_{2}(t) + Z_{1}i_{2}(t)$

适用范围:入射波必须沿分布参数线路传 播而来,和节点相连的线路必须无穷长

彼得逊法则

将分布参数电路波过程用集中参数等值电路表示: 线路波阻抗Z1用数值相等的集中参数电阻来代替 线路入射电压波的两倍作为等值电压源 在实际中会遇到电流源的情况,如雷电流的作用,通 过电路变换即可得到其等值电路 [例] 如图 6(a) 所示,变电所母线上接有 n 条线路,每条线路的 波阻抗为 Z。当一条线路落雷,有雷电压 u(t)侵入变电所时,求母 线上的电压 u₂(t)。

解: 根据彼德逊法则,可得下图所示的等值计算电路

$$u_{2}(t) = 2u(t)\frac{\frac{Z}{n-1}}{Z + \frac{Z}{n-1}} = \frac{2u(t)}{n}$$

连接在母线上的线路越多,母线 上的过电压愈低。这对降低变电 所的雷电过电压水平有利 25

第三节 行波经过串联电感和并联电容

载波通讯用的高频扼流线圈、无功补偿电感、 电容式电压互感器、电气设备的入口电容、无 功补偿电容等等

分析采用无限长的直角波:得到直角波作用下的波过程,采用<mark>丢阿摩尔(Duhamel</mark>)积分计算任 意波形电压下的波过程

1. 直角波经过串联电感和并联电容

■ 经过串联电感

$$U_{2}(p) = \frac{2E}{p} \frac{Z_{2}}{Z_{1} + Z_{2} + pL}$$
$$= \alpha E \frac{1}{T_{L}} \frac{1}{p(p + \frac{1}{T_{L}})}$$

$$\alpha = \frac{2Z_2}{Z_1 + Z_2}$$
$$T_L = \frac{L}{Z_1 + Z_2}$$

29

■ 经过并联电容

$$U_{2}(p) = \frac{2E}{p} \frac{Z_{2}}{Z_{1} + Z_{2}} \frac{\frac{1}{pC}}{\frac{1}{pC}}$$
$$= \alpha E \frac{1}{T_{c}} \frac{1}{p(p + \frac{1}{T_{c}})}$$

$$\alpha = \frac{2Z_2}{Z_1 + Z_2}$$
$$T_c = C \frac{Z_1 Z_2}{Z_1 + Z_2}$$

并联电容和串联电感两种情况具有完全相同的形式,通过反变换可以得到形式相同的节点电压的时域解为

$$u_{2q}(t) = \alpha E(1 - e^{-t/T}) \qquad u_{1f} = \frac{Z_2 - Z_1}{Z_2 + Z_1} E - \frac{2Z_2}{Z_1 + Z_2} E e^{-t/T}$$

对电容: $T = T_C$, 对电感: $T = T_L$

t = 0 U_{1f} =-E ,降低波的陡度 t → ∞ $U_{1f} = \frac{Z_2 - Z_1}{Z_2 + Z_1} E$ 电容相当于开路,不存在 t → ∞ $U_{2q} = \alpha E$

■ 最大陡度发生在 t =0 时刻

 $u_2(t) = \alpha E(1 - e^{-t/T})$

- > 只要增加电容或电感就可以将限制侵入波的陡度
- 在无穷长的直角波作用下,电容和电感对最终的稳态值没有影响,因为直流电压作用下,电容相当于开路、电感相当于短路

2. 丢阿摩尔(Duhamel)积分

- 将一任意波形分解为时间间 隔为的大量的阶跃波函数
- 分别求出各阶跃函数的解后 叠加而得到总的结果

$$u = e(0)y(t) + \int_{0}^{t} e'(\tau)y(t-\tau)d\tau$$

e(*t*): 任意电压波形*y*(*t*): 单位阶跃函数的解

3. 平顶斜角波经过电容和电感

 $u = e(0)y(t) + \int_{0}^{t} e'(\tau)y(t-\tau)d\tau$

波头时间为b、幅值为E 的斜角波通过电感或旁 过电容

■ 先求出线路在斜角波 $u_1 = E t / b$ 作用下的解

$$u_2(t) = \int_{o}^{t} \frac{E}{b} \alpha \left(1 - e^{-\frac{t-\tau}{T}} \right) d\tau = \frac{E}{b} \alpha \left(t - T + T e^{-\frac{t}{T}} \right)$$

■ 再将波头时间为b、幅值为E的斜角波分解为两个极性相反 、且在时间上相差b的斜角波

$$t \le b$$
, $u_2(t) = \frac{E}{b} \alpha \left(t - T + Te^{-\frac{t}{T}} \right)$

$$t \ge b, \qquad u_2(t) = \frac{E}{b} \alpha \left[b + T e^{-\frac{t}{T}} \left(1 - e^{-\frac{b}{T}} \right) \right]$$

折射波的最大陡度出现 在*t=b*时刻,其值为

$$\frac{du_2}{dt}\Big|_{\max} = \frac{E}{b}\alpha \left(1 - e^{-\frac{b}{T}}\right)$$

【例】幅值E = 100kV的直角波,发电机绕组 $Z_2 = 800 \Omega$,绕组每匝长度为3m,匝间绝缘耐压为600V,绕组中波的传播速度 $v = 6 \times 10^7$ m/s。求用并联电容器来保护匝间绝缘时所需的电容值

$$\left(\frac{du_2}{dt}\right)_{\max} = \left(\frac{du_2}{dx}\right)_{\max} \cdot \frac{dx}{dt} = \frac{600}{3} \times 6 \times 10^7 = 12 \times 10^9 V / s$$

第四节 波的多次折反射

以波到达节点1的时间为起点,相邻的前后两个 折射波相差2*τ*

 $u_{2}(t) = \alpha_{1}\alpha_{2}u_{2}(t-\tau) + \alpha_{1}\alpha_{2}\beta_{1}\beta_{2}u_{2}(t-3\tau) + \alpha_{1}\alpha_{2}(\beta_{1}\beta_{2})^{2}u_{2}(t-5\tau) + \cdots + \alpha_{1}\alpha_{2}(\beta_{1}\beta_{2})^{n-1}u_{2}[t-2(n-1)\tau]$

 $u_{2} = E\alpha_{1}\alpha_{2}[1 + \beta_{1}\beta_{2} + (\beta_{1}\beta_{2})^{2} + \dots + (\beta_{1}\beta_{2})^{n-1}]$ $= E\alpha_{1}\alpha_{2}\frac{1 - (\beta_{1}\beta_{2})^{n}}{1 - \beta_{1}\beta_{2}}$

 $t \to \infty \qquad (\beta_1 \beta_2)^n \to 0$

$$U_{2} = \frac{2Z_{2}}{Z_{1} + Z_{2}}E = \alpha_{12}E$$

线段Z₀的存在对线段Z₂上的前行波的最终幅值没有影响
 线段Z₀的存在对线段Z₂上的前行波的波形有影响 39

线段Z₀的存在对线段Z₂上的前行波波形的影响

 $\beta_1 > 0, \beta_2 > 0, \alpha_1 < 1, \alpha_2 > 1$

<u>u</u>

Z1

 $\beta_1 < 0, \beta_2 < 0, \alpha_1 > 1, \alpha_2 < 1$

Ζo

 $u_2(t)$

 \mathbb{Z}_2

 $(a)Z_1>Z_0, Z_2>Z_0$ (b) $Z_1 < Z_0$, $Z_2 < Z_0$ $\beta_1 < 0, \beta_2 > 0, \alpha_1 > 1, \alpha_2 > 1$ $u_2(t)$ $\beta_1 > 0, \beta_2 < 0, \alpha_1 < 1, \alpha_2 < 1$ $u_2(t)$ <u>u</u> 2 Z_1 \mathbb{Z}_2 Z_2 Ζo Ζo $(d) Z_1 > Z_0 > Z_2$ $(\circ) Z_1 < Z_0 < Z_2$

例题: 直流电源合闸于空载长线,求末端和中点 电压

第五节 波在平行多导线系统中的传播

■ *n* 根平行导线,其静电方程为静电方程

$$u_{1} = P_{11}q_{1} + P_{12}q_{2} + \dots + P_{1n}q_{n}$$

$$u_{2} = P_{21}q_{1} + P_{22}q_{2} + \dots + P_{2n}q_{n}$$
.....

$$u_{n} = P_{n1}q_{1} + P_{n2}q_{2} + \dots + P_{nn}q_{n}$$

$$P_{kk} = \frac{1}{2\pi\varepsilon_0} \ln \frac{H_{kk}}{r_k}$$
$$P_{km} = \frac{1}{2\pi\varepsilon_0} \ln \frac{H_{km}}{D_{km}}$$

电位系数

U = PQ

引入波速 v , 各导线中的波具有同一传播速度v (等于光速),导线中的电流可由单位长度上 的电荷 q 的运动求得

 $q_k v = i_k$ 为第 k 根导线中的电流

平行多导线系统的电压方程

■ 平行多导线系统的波过程

若线路中同时存在前行波 u_q 和反行波 u_f i_f

$$u = u_q + u_f$$
$$i = i_q + i_f$$
$$u_q = Zi_q$$
$$u_f = -Zi_f$$

根据不同的具体边界条件,应用 以上各式就可以求解平行多导线 系统的波过程

当开关合闸直流电源E后,<mark>导线1</mark>上出现的前行波 $u_1 = E$ 。 在对地绝缘的<mark>导线2</mark>上虽然没有电流,但由于它处在导线 1电磁波的电磁场内,也会感应产生电压波

47

平行多导线的耦合系数 $k = \frac{Z_{12}}{Z_{11}}$

- 随导线之间距离的减小而增大 ,两根导线越靠近,其耦合系 数越大
- 耦合系数是输电线路防雷计算的一个重要参数
- ▶ 由于耦合作用,当导线1上有电 压波作用时,导线1、2之间的 电位差不再等于E,而是比E小
- 导线之间的耦合系数越大,其 电位差越小,这对线路防雷是 有利的

 $u_1 - u_2 = (1 - k)E < E$

[例]如图所示输电线路采用两根避雷线,他 们通过金属杆塔彼此连接,要求计算雷击塔 顶时避雷线1、2对导线3 的耦合系数

已知
$$Z_{11}$$
 Z_{22} Z_{12} Z_{13} Z_{23}
 $Z_{11} = Z_{21}$ $Z_{13} = Z_{31}$ $Z_{23} = Z_{31}$

解:列出避雷线1、2和导线3的电压方程

避雷线1、2对导线3的耦合系数为

$$k_{1,2-3} = \frac{u_3}{u_1} = \frac{Z_{13} + Z_{23}}{Z_{11} + Z_{12}} = \frac{k_{13} + k_{23}}{1 + k_{12}}$$

49

波沿导线传播时的衰减和变形

导线电阻 线路对地电导的损耗

▷ 只有衰减,不会变形的条件 $\frac{R_0}{G_0} = \frac{L_0}{C_0}, \quad \vec{x} = \frac{G_0}{C_0} = \delta$ $\frac{\frac{1}{2}L_0i^2}{\frac{1}{2}C_0u^2} = \frac{R_0i^2t}{G_0u^2t}$

不致引起波传播过程中电能与磁能的相互交换, 电磁波只是逐渐衰减而不致变形

> 电压波和电流波的形式为

$$\begin{cases} u(x,t) = e^{\delta t} (u_f + u_b) \\ i(x,t) = \frac{1}{Z} e^{\delta t} (u_f - u_b) \end{cases}$$

实际中输电线路并不满足无变形条件,因此波在 传播过程中不仅会衰减,还会变形

■ 冲击电晕对波过程的影响

> 冲击电晕伏库特性 研究与计算波衰减变形的基础

q = f(u)

波传播过程中,导线上 的冲击电压瞬时值*u*与 导线上及其周围电晕套 内的总电荷*q*的关系

现行规程计算<mark>负极性</mark>伏库特性经验公式

$$q = C_0 u \cdot 1.32(1 + \frac{2u}{h})$$

比较通用的伏库特性

$$\frac{q}{q_0} = A + B(\frac{u}{u_0})^{\frac{4}{3}}$$

正极性: A=0 B=1.02 负极性: A=0.15 B=0.85

> 电晕电路的波动方程

$$-\frac{\partial u}{\partial x} = \frac{\partial \psi}{\partial t} = L_0 \frac{\partial i}{\partial t}$$
$$-\frac{\partial i}{\partial x} = \frac{\partial q}{\partial t} = \frac{\partial q}{\partial u} \cdot \frac{\partial u}{\partial t} = C_d \frac{\partial u}{\partial t}$$

$$C_d = \frac{dq}{du} = MC_0 \left(\frac{u}{u_0}\right)^{\frac{1}{3}} \qquad M$$

I常数,正极性时, **M**=1.35 负极性时, M=1.13

动态电容

> 计及电晕损耗时的波速度

$$v_c = \frac{1}{\sqrt{L_0 C_d}} < c$$

➢ 波经过传播距离 Ⅰ 后的时延为

$$\Delta t = \frac{l}{v_c} - \frac{l}{c} = 3.33 \left(D_6 \sqrt{\frac{u}{u_0}} - 1 \right) l$$

D为常数,正极性时为1.17 负极性时为1.06

冲击电晕引起波的衰变和变形

■ 冲击电晕对波过程的影响

- > 冲击电晕使导线间的耦合系数增大

发生电晕后在导线周围积聚起空间电荷,好像增大了 导线半径,导线的自波阻抗减小,耦合系数增大 电晕使导线间的耦合系数随电压瞬时值而变化,电压 越高,耦合系数越大

工程上的冲击电晕时的耦合系数

屠幼 萍 ▲ 高电压与电磁兼容研究所 ■ 80795842 13691145432 ☑ typ@ncepu.edu.cn